Função

Dados dois conjuntos A e B não vazios, função é uma relação R de A em B se e somente se para todo elemento x de A existe um único correspondente y em B.

Se você observar a figura ao lado esquerdo, verá que o elemento 1 de A possui a imagem b em B, o elemento 2 de A possui imagem b em B, porém o elemento 3 de A possui as imagens c e d em B.
Então, concluímos que essa relação R  de A em B não é uma função.

Exemplos de Funções: 

Sejam os conjuntos A= {1,2,3} e B= {1,2,3,4,9} e as relações:
a) R1
»  R1 é uma função de A em B, pois todo elemento de A tem um       único     correspondente (imagem) em B






b) R2
» R2 é uma função de A em B, pois todo elemento de A tem uma      única imagem em B
  A imagem do 1€A é 1 em B.
  A imagem do 2€A é 1 em B.
  A imagem do 3€A é 4 em B. 



Observação: Para que seja função:
1. Todo elemento de A tem imagem em B;
2. Cada elemento de A só tem uma única imagem em B.

Contra-exemplos:
c) R3
» R3 não é uma função, pois os elementos 2 e 3 de A não têm    imagens em B.






d) R4

» R4 não é uma função, pois há elementos de A, o 1, com mais de uma imagem em B (1 de A, tem as imagens 1 e 2 em B).





Exercícios:






1. Dados os conjuntos: E= {1,2,3,4} e B={2,5,6} e as relações abaixo, escreva se é função ou não é função:
a) R1= {(1,2),(2,5),(3,6)}
b) R2= {(1,2),(2,5),(3,2),(4,6)}
c) R3= {(1,5),(2,5), (3,5),(4,5)}
d) R4= {(2,2),(3,5),(4,6)}

Respostas:
a) Veja: 1→2, 2→5, 3→6, como todos os elementos da esquerda (CONJUNTO E) têm uma única imagem, mas o 4 de E não têm imgem,  logo: NÃO É FUNÇÃO.

b) Veja: 1→2, 2→5, 3→2 e 4→6, TODOS ELEMENTOS DE E TÊM IMAGENS - É FUNÇÃO.

c) Veja esquema: 1→5, 2→5,  3→5 e 4→5, idem - É FUNÇÃO.

d) Veja esquema: 2→2, 3→5, 4→6, Como o elemento 1 não tem imagem, NÃO É FUNÇÃO. 

2. Dada a função f de A em B pelo diagrama de setas, dê a imagem dos elementos a, b, c, e d.









Resposta: Imagens de {a,b,c,d} são:{1,1,2,4}

Notação
Uma função f de A em B, ou seja, domínio em A e imagem no contradomínio B, indica-se:
f: A→B  (lê-se f de A em B)
Assim, cada elemento x de A está associado a um único y, imagem de x pela função f, que se indica f(x) e lê-se f de x.

RESUMO:
» O conjunto A chama-se domínio da função f.
» O conjunto B chama-se contradomínio da função f.
» x é o elemento arbitrário do domínio.
» y=f(x) é a imagem de x no contradomínio.
» O conjunto dos elementos de B que são imagens dos elementos de A forma o conjunto imagem (Im).

Se você quer saber sobre funções trigonométricas, clique aqui







Comentários

  1. Muito obrigado meu amigo.
    Quase tudo que procuro acho neste blog.
    Vou divulgá-lo.

    ResponderExcluir
  2. A matemática é feminina, logo, não entendo o porquê de alguns alunos não gostarem dela.Matemática é cool.

    ResponderExcluir

Postar um comentário

Ficou alguma dúvida sobre a postagem acima ou quer deixar uma sugestão?
Escreva seu comentário no espaço apropriado, seja para elogiar, criticar ou expor dúvidas, que publicaremos e responderemos o mais rápido possível.

Atenção: Serão excluídos os comentários contendo propagandas e também aqueles que faltem com o respeito e educação a qualquer usuário do Blog ou, os que venham induzir nosso leitor a acessar conteúdos impróprios e eticamente não recomendados. Desde já, agradecemos sua participação!




Postagens mais visitadas deste blog

Área de Figuras Planas!

Calculo da Área de um Triângulo Qualquer

Duas Retas Paralelas se Encontram no Infinito?