Principais Operações Básicas da Matemática!
Através de nossas pesquisas junto aos nossos leitores, visualizamos que muitos têm dificuldades em compreender as noções básicas da Matemática e por esse motivo não assimilam conteúdos mais avançados em seus estudos nesta e em outras ciências exatas de um modo geral. Se você precisa de ajuda com a matemática básica, ou tem dificuldades de como fazer as operações de subtração, multiplicação, divisão, frações, decimais, porcentagens ou média aritmética é para você que este conteúdo está sendo dirigido.
Então, não deixe de ler a matéria e estudar estas noções básicas da matemática. Estaremos focando o aprendizado de uma forma mais ágil, fácil e o mais simples possível. Os nossos conteúdos são projetados para serem acompanhados como um livro de matemática, tudo abordado de forma que você aprenda e pratique diretamente dentro das próprias postagens e que também possa aprender nas suas horas de folga e no seu próprio ritmo de aprendizado.
Por tudo isso, sugerimos que você adicione nosso blog: Recordando Matemática a seus favoritos e caso tenha dificuldades poderá voltar a ele sempre que quiser e a qualquer momento. Para ajudá-lo ainda mais, colocamo-nos a sua disposição, para uma explicação mais detalhada, bastando postar sua dúvida em forma de comentário ou enviar uma mensagem no rodapé do blog, que teremos o maior prazer em atendê-lo e sanear as suas dúvidas o mais rápido possível.
Mas, sem maiores delongas vamos agora aprender o que é considerado o básico desta ciência, que começaremos a expor logo a seguir:
Conteúdos Básicos da Matemática
Na matemática básica, existem muitas maneiras de dizermos a mesma coisa:
Veja os símbolos e o significado deles...
Símbolo
|
Palavras Mais Usadas
|
+
|
Adição: Adicionar, Somar, Aumentar, ou Total
|
-
|
Subtração: Subtrair, Menos, Diferença, Diminuir, ou Deduzir
|
×
|
Multiplicação: Multiplicar, Produto
|
÷
|
Divisão: Dividir, ou Quociente
|
O que é a adição?
Trata-se da operação aritmética que junta dois ou mais números (ou coisas) em um único conjunto para perfazer um novo total.
Os números ou termos que devem ser somados são chamados de "adendos".
Exemplo: 7 + 4 = 11, onde 7 e 4 são os adendos, enquanto que 11 é a soma ou total deles.
O que é a subtração?
É uma operação aritmética na qual deduzimos ou retiramos um número de qualquer outro.
Exemplo: 7 – 3 = 4, onde 7 é o minuendo, 3 é o subtraendo e 4 é a diferença entre eles.
Minuendo: O número do qual deve ser subtraído.
Subtraendo: O número que é para ser subtraído.
Diferença: O resultado da subtração de um número de outro.
Subtraendo: O número que é para ser subtraído.
Diferença: O resultado da subtração de um número de outro.
Observação: Quando o minuendo é maior que o subtraendo o resultado ou diferença será positivo e caso contrário o resultado será negativo.
Exemplo: 3 - 7 = -4
O que é a multiplicação?
É uma operação aritmética simples de se adicionar uma quantidade finita de números iguais ou adição repetida.
Exemplo: 6 + 6 + 6 (três vezes o 6) vão totalizar 18, onde 6 é o fator, 3 é o multiplicando e 18 o produto.
Pode também ser dito que 3 + 3 + 3 + 3 + 3 + 3 (seis vezes o número 3) totalizam ou produzem o 18.
Mas também podemos multiplicar por frações ou decimais, o que vai além da simples ideia de adição repetida:
Exemplo: 5 × 3,5 = 17,5
que é de 3,5 lotes ou partes de 5 ou 5 lotes ou partes de 3,5
O que é a Divisão?
É a operação aritmética para dividir em partes iguais ou fatias. Ou, o resultado da "partilha equitativa".
Na divisão temos seus próprios termos especiais para nos lembrarmos.
Por exemplo: dividir 22 por 5. A resposta é 4, com 2 sobrando ou resto. Aqui veja os termos importantes:
Ou seja: 22 é o dividendo, 5 é o divisor, 4 é o quociente e 2 é o resto da divisão acima proposta.
O que é uma Fração?
É a parte de um todo.
Exemplo: 3/4 onde 3 é o numerador, 4 é o denominador.
Temos na figura abaixo uma pizza dividida em 4 partes iguais, a fração 3/4 representa 3 partes da pizza.
Uma fração é escrita com a parte inferior (o denominador) nos dizendo quantas partes iguais do todo ela é dividida, enquanto que a parte superior (o numerador) nos informa quantas partes que foram pegas do total.
Para maior detalhes e entendimento sobre as frações, acesse nosso post sobre frações.
O que é um número decimal?
É um número que contém uma vírgula ou ponto decimal.
Exemplo: 15,792, onde os dígitos: 1 é representa a DEZENA, 5 é chamado de UNIDADE, a vírgula representa o PONTO DECIMAL, 7 vale os DÉCIMOS, 9 os CENTÉSIMOS e 2 os MILÉSIMOS. A parte que vem antes da vírgula ou ponto chama-se inteiros, no caso quinze inteiros.
Para escrever ou falar corretamente o número acima, dizemos:
Quinze inteiros, sete décimos, nove centésimos e dois milésimos. OU
Quinze inteiros e Setecentos e noventa e dois milésimos. (forma convencional utilizada na legislação)
Nota: Existem outras formas também aceitas pela matemática.
O que é a porcentagem?
... Partes por 100. O símbolo é %
Exemplo: 25% significa 25 por 100, ou a fração 25/100. (25% dessa caixa é verde)
O que é a Média Aritmética?
Trata-se da soma do valor dos fatores, dividida pela quantidade de fatores ou termos da contagem.
Nós calculamos a média somando-se todos os valores ou fatores, e em seguida, dividindo por quantidade de fatores da soma.
Nota: Se quiser um estudo mais detalhado sobre Média, Mediana e Moda sugerimos acessar nossa postagem sobre o assunto clicando aqui
Nota: Se quiser um estudo mais detalhado sobre Média, Mediana e Moda sugerimos acessar nossa postagem sobre o assunto clicando aqui
Exemplo: Qual é a média de 9, 2, 12 e 5?
Some todos os valores: 9 + 2 + 12 + 5 = 28
Divide por quantos valores (existem quatro deles): 28 ÷ 4 = 7
Assim, a média é de 7
Alguns Exercícios para você exercitar o que aprendeu! Procure solucioná-los sem ver a resposta:
1) Ache os totais das seguintes operações:
a) 2+10-3=?
b) 2x3 - 4x12 =?
c) (3+5+6+8) ÷2 =?
d) 7x7-4=?
Solução:
a) 12-3 = 9
b) 6 - 48 = -42 - Nota: Sempre fazemos primeiro a operação de multiplicação.
c) 22÷2 = 11 - Nota: Sempre resolvemos os parentese primeiro.
d) 49-4 = 45
Atenção: Se você tiver dúvidas sobre o uso dos parenteses, regras nas operações aritméticas, etc. acesse a postagem: Regra PEMDAS!
2) Fui ao supermercado e comprei 2 quilos de carne, 3 sacos de feijão, 5 quilos de tomate. Sabendo-se que o preço do feijão era de R$ 5,00 por saco, o tomate era R$ 6,00 o quilo, enquanto que a carne cada 200 gramas valia 5 reais. Se paguei com cinco notas de 10 reais mais quatro de 20 reais. Qual foi meu troco?
Solução:
valor das compras efetuadas: 2 quilos de carne = 2000 gramas = 2000/200 x5,00 ou 10x5,00= 50,00
3 sacos de feijão = 3x5,00 = 15,00
5 quilos de tomate = 5x6,00 = 30,00
Logo, gastei = 50,00+15,00+30,00 = 95,00
Dinheiro dado ao caixa do supermercado:
5x10,00 = 50,00 + 4x20,00= 80,00 = 130,00
Troco recebido = 130,00 - 95,00 = 35,00
3) Qual a média aritmética dos seguintes valores:
a) 7, 4, 9 e 10
b) 4,5 e 7,5
c) 4, 8, -7 e 5
d) 20,00 e 400,00
Solução:
a) (7+4+9+10)/4 = 30/4 = 7,5
b) (4,5 + 7,5) ÷2 = 12/2 = 6
c) (4+8-7+5) /4 = 10/4 = 2,5
d) 420,00 /2 = 210,00
4) Se um número mais o dobro dele vale 18, qual o número?
Solução:
x+2x = 18 → 3x = 18 →x=18/3 = 6, Logo esse número vale 6
5) Efetue a operação e dê o resultado em decimais: 0,10 + 10/5 + 2,3 - 0,003 + 3/15.
Solução: Colocando tudo em decimais teremos: 0,10 + 2,0+ 2,3 - 0,003 +0,2 = 4,6 - 0,003 = 4,597
6) A soma de três números ímpares consecutivos é igual
a 45. Quais são os esses números:
a) 1, 3 e 41 b) 3, 5 e 37 c) 7, 9 e 11 d) 13, 15 e 17 e) 11, 13 e 21
a) 1, 3 e 41 b) 3, 5 e 37 c) 7, 9 e 11 d) 13, 15 e 17 e) 11, 13 e 21
Solução:
1º número: x
2º número: x + 2
3º número: x + 4
2º número: x + 2
3º número: x + 4
( x )+(x + 2) + (x + 4) = 45
Solução:
x + x + 2 + x + 4 = 45
3x = 45 – 2 – 4
3x = 45 – 6
3x = 39
x = 39/3
x = 13
3x = 45 – 2 – 4
3x = 45 – 6
3x = 39
x = 39/3
x = 13
1º número: x → 13
2º número: x + 2 → 13 + 2 = 15
3º número: x + 4 → 13 + 4 = 17
2º número: x + 2 → 13 + 2 = 15
3º número: x + 4 → 13 + 4 = 17
Os números procurados são: 13, 15 e 17. Letra d
7) O triplo de um número natural somado com 1 é igual
ao quadrado de 5. Calcule-o:
Solução:
3x + 1 = 5²
3x = 25 – 1
3x = 24
x = 24/3
x = 8
3x = 25 – 1
3x = 24
x = 24/3
x = 8
Portanto, o número procurado vale 8.
8) A idade de um pai vale o quádruplo da idade de seu
filho. Daqui a cinco anos, a idade do pai será o triplo da idade do filho. Qual
é a idade atual do pai e do seu filho?
Solução:
Atualmente:
Filho: x
Pai: 4x
Filho: x
Pai: 4x
Futuramente
Filho: x + 5
Pai: 4x + 5
Filho: x + 5
Pai: 4x + 5
4x + 5 = 3 . (x + 5)
4x + 5 = 3x + 15
4x – 3x = 15 – 5
x = 10
4x + 5 = 3x + 15
4x – 3x = 15 – 5
x = 10
Pai: 4x → 4 . 10 = 40
O filho tem 10 anos e o pai tem 40.
9) O dobro de um número adicionado ao seu triplo
corresponde a 50. Qual é esse número?
Solução:
2x + 3x = 50
5x = 50
x = 50/5
x = 10
5x = 50
x = 50/5
x = 10
O número é 10.
10) Em um sitio criam-se galinhas e coelhos totalizando
45 animais, os quais totalizam juntos 140 pés. Determine o número de galinhas e dos
coelhos existentes nessa propriedade.
Solução:
Galinhas: g
Coelhos: c
Coelhos: c
g + c = 45 (1ª equação)
Cada galinha possui 2 pés e cada coelho
4, então:
2g + 4c = 140 (2ª equação)
Isolando c na 1ª equação:
g + c = 45
c = 45 – g
g + c = 45
c = 45 – g
Substituindo c na 2ª equação:
2g + 4c = 140
2g + 4 . (45 – g) = 140
2g + 180 – 4g = 140
2g – 4g = 140 – 180
– 2g = – 40
g = 40/2
g = 20
2g + 4c = 140
2g + 4 . (45 – g) = 140
2g + 180 – 4g = 140
2g – 4g = 140 – 180
– 2g = – 40
g = 40/2
g = 20
Calculando c
c = 45 – g
c = 45 – 20
c = 25
c = 45 – 20
c = 25
Logo, nesse sitio temos: 20 galinhas e 25
coelhos.
Atenção: Numa próxima
postagem, abordaremos mais conteúdos elementares da Matemática.
A Matemática Aqui é Simples e Descomplicada! |
Aprendi e revisei muito.
ResponderExcluirGrato!